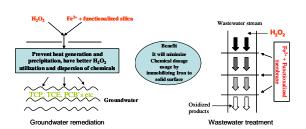
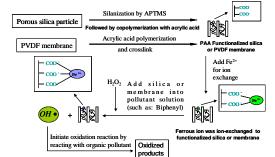
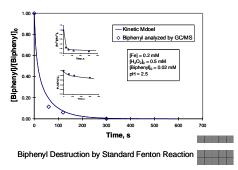
Chloro-Organics Detoxification by Immobilized Iron-Chelate-Based Fenton Reaction

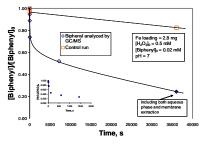
Author(s): YongChao Li¹, Leonidas G. Bachas², and Dibakar Bhattacharyya¹


Affiliation(s): Department of Chemical & Materials Engineering¹, Department of


Chemistry², University of Kentucky, Lexington, KY 40506-0046

Background


- Chelate-Based Modified Fenton reaction for Pollutant Detoxification
 - The hydroxyl radical- $OH \bullet produced$ by $Fe^{2+} + H_2O_2$ is a highly reactive intermediate
 - > It can react with organic pollutant rapidly to form intermediate through hydrogen abstraction or electron transfer
 - ➤ Chelate will sequester Fe³⁺ to prevent ferric hydroxide (Fe(OH)₃) precipitation
 - Chelate combines with Fe²⁺ to slow down the overall detoxification reaction to maximize reactant usage and avoid temperature rise


 Application and Procedure for Modified Fenton Reaction Involving Immobilized Iron-Chelate

Experimental Results

Biphenyl Destruction by iron-chelate immobilized Fenton reaction

Conclusions

- Effective oxidation of chlorinated organics by the chelate-based Fenton reaction demonstrated
- Poly-chelate (such as PAA) can be immobilized on PVDF membrane for repeated use, which has the potential usage for wastewater remediation
- Kinetic models are developed to show a slow reaction can be achieved for a free radical reaction by introducing a chelating agent
- Minimization of temperature rise problem during Fenton reactants injection (demonstrated through actual pilot plant experiments)

Acknowledgement

- ➤ NIEHS-SBRP supported this research
- > Various analytical supports were provided by ERTL (Environmental Research Training Lab) at the University of Kentucky

